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Abstract

Monte Carlo studies of statistical tests are prominently featured in the

methodological research literature. Unfortunately, the information from

these studies does not appear to have significantly influenced methodological

practice in educational and psychological research. One reason is that Monte

Carlo studies lack an overarching theory to guide their interpretation.

Also, the impressionistic nature of Monte Carlo studies can lead different

readers to different conclusions. These shortcomings can be addressed using

meta-E.nalytic- methods to summarize the results of Monte Carlo studies.

Summarizing Monte Carlo studies in this fashion will generate guidelines for

the appropriate use of particular statistical tests under specific assumption

'violations, and will allow an evaluation of the validity of the statistical

results of previously published studiei. This paper provides a

methodological framework for, and an example of, quantitatively summarizing

empirical type I error and power values from Monte Carlo studies.
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Summarizing Monte Carlo Results in Methodological Research

Introduction

Quantitative methods of inquiry play a key role in educational and

psychological research by providing evidence about the plausibility of

substantive models (e.g., models specifying the form of the ztlationship

between time on task and learning mathematics) . Parametric statistical tests

are among the most popular of these methods, and require that certain

assumptions (e.g., normality o2 a population of scores) he tenable for the

tests to yield valid conclusions. If these assumptions are not tenable the

results may lack validity and therefore lead to incorrect inferences (Cook

& Campbell, 1979). The results of critical examinations of educational and

psychological data suggest that these data often fail to satisfy underlying

assumptions (Stigler, 1977; Micceri, 1989). This suggests a need to identify

the effects of assumption violations on statistical tests for data conditions

(e.g., nonnormality) that are present in empirical studies in educational and

psychological research.

Ubenever possible exact statistical theory is used to determine the

mathematical properties a test will have when its underlying assumptions are

not tenable. This is seldom possible since most exact statistical theory

requires normality of the population distribution of scores, an assumption

which educational data rarely satisfies. Instead, researchers have examined

the effects of assumption violations on parametric statistical tests using

computer simulation or Monte Carlo (MC) studies.

In the typical MC study of a given statistical test the following
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process is repeated for a large number of samples: data are simulated which

reflect a specified relationship among variables (but which do not usually

conform to the assumptions required for correct application of the test), the

statistical test is computed for the data, and the value of the statistical

test is recorded. The collection of values of the statistical test provide

information on its properties(a.q., the proportion of "significant" values

of the test). If the underlying assumptions of the test were satisfied,

exact statistical theory would guarantee that the /test would have a specified

type I error rate and would permit the probability of rejecting a false

statistical hypothesis to be computed; MC studies permit these

characteristics. to be examined when underlying assumptions are violated.

An unfortunate characteristic that MC studies share with many empirical

studies in educational and psychological research is their lack of an

overarching theory to guide their interpretation. The absence of such a

theory implies that each MC result is limited to the particular conditions

of that study (e.g., the way data was simulated, sample sizes used). This

problem is exacerbated by the impressionistic nature of MC studies, which can

lead different readers to different conclusions regarding a particular MC

study or a series of MC studies investigating the same statistical test. On

the whole, MC results seem to have had little effect on methodological

practice in educational and psychological research.

These shortcomings can be addressed using qucntitative methods of

research synthesis (e.g., meta-analysis), conceptualized by Glass (1976).

Meta-analytic methods can be used to summarize the results of MC studies of

any statistical test (e.g., ANOVA and ANCOVA F-tests) for which a sufficient

body of literature exists. The goal of these methods in a MC setting is the
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correct modeling of the relationships between the MC results (i.e., empirical

type I error and power values) and the characteristics (i.e., explanatory

variables) of the simulation studies themselves.

An important outcome of such summaries would be. the generation of a

context within which to place these studies, i.e., a network of empirical

(31C) results that would provide a context for interpreting past and future

MC studies. The generation of a network of empirical MC results would lead

to more comprehensive, definitive, and valid guidelines for the appropriate

use of statistical tests (such as those associated with the ANOVA and ANCOVA

models) than are presently available, and would permit frequently asked

questions about these tests to be addressed. It would also enable

educational and psychological researchers to better evaluate the validity of

published statistical results involving these tests. For example, published

research articles that used ANCOVA could be evaluated considering these

guidelines.

This paper provides a rationale and a methodological framework for

applying meta-analytic methods to summarizing MC results. The intent is to

encourage methodological researchers to use these methods to quantitatively

summarize MC results of particular statistical tests. This should contribute

to improved methodological practice in educational and psychological

research.

The organization of the paper is as follows: First, previous attempts

to summarize the results of MC studies are reviewed. Second, issues related

to study selection and variable definitions are discussed. Next,

statistical procedures that can be used to quantitatively summarize MC

results are presented. A small sample of MC studies of the parametric
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Bartlett test of the equality of independent variances is used to illustrate

the preceding issues and methods. The rationale for cnoosing the Bartlett

test is that the availability of both analytic and empirical evidence of the

effects of particular assumption violations (e.g., nonnormality of the

popula'ion score distribution) will permit an evaluation of the usefulness

of the prcposed methods. Put another way, the effect of certain assumption

violations on the Bartlett test of equality of independent variances are

known a priori and thus the performance of the meta-analytic methods can be

evaluated 'considering the relationships between the MC results and

characteristics of the MC studies that should or should not be detected.

Finally, the need for summaries of MC results for particular statistical

tests is emphasized.

Previous Attempts to Synthesize Monte Carlo Results

The early 1970's witnessed the emergence of a substantial body of MC

literature of the performance of particular statistical tests. Among the

best known and most influential summaries of MC results from this period is

that due to Glass, Peckham, and Sanders (1972). These authors narratively

summarized the available MC studies of the F-test associated with the oneway

fixed-effects ANOVA and ANCOVA models. Glass et al. concluded that the

associated F- -tests were quite robust to departures from the assumptions of

normality and homogeneity of variance (the exception for the latter occurs

when large and unequal samples are paired with small variances or when small

and unequal samples are paired with large variances). A strength of the

review, and one that should be emulated in constructing a network of

empirical MC studies, is the effort that Glass et al. made to relate MC
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results to exact statistical theory.

Despite its comprehensive nature (for that time) and its influence on

statistical practice, the Glass et al. review suffers from two shortcomings.

Perhaps the most serious shortcoming is its impressionistic nature. Blair

(1981) pointed out that a careful reading of the studies summarized by Glass

et al. could, allow different conclusions to be reached. This shortcoming is

shared by recent narrative summaries of MC results in the educational and

psychological research literature (e.g., Harwell & Serlin, 1988 (F-test in

ANCOVA); Conover, Johnson, & Johnson, 1979 (F-test of etiality of independent

variances).; Blair & Higgins, 1985 (matched-pair t-test)).

A second shortcoming of the Glass et al. review is that the results of

recent MC studies of ANOVA and ANCOVA models suggest that certain of their

recommendations need to be re-examined. For example, Glass et al. concluded

that if sample sizes are equal, variance heterogeneity will have a negligible

effect on the nominal type I error rate (i.e., a few hundredths of a

percent). Yet Totaarkin and Serlin (1987) found that realistic combinations

of heterogeneous variances noticeably affect the nominal type I error rate

of the F-test even if sample sizes are equal.

Despite their shortcomings, qualitative reviews like Glass et al. should

not be discounted; on the contrary, narrative summaries can provide valuable

information about the performance of a statistical test. across a sample of

MC studies. However, there is a need to complement qualitative reviews like

Glass et al. with quantlzative methods of research synthesis (e.g., meta-

analysis). A five-stage strategy for quantitatively summarizing the results

of MC studies and associated issues are presented next.
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A Four Step Strategy For Summarizing Monte Carlo Results

Quantitatively summarizing MC results for a particular statistical test

can be represented in four stages following the framework of Cooper (1982):

1) prob?em formulation, 2) data collection, 3) data evaluation, and 4) data

analyses and interpretation.

Stage One: Problem Formulation

The goal of quantitatively summarizing MC results is to generate

guidelines for the appropriate use of a statistical test (e.g., F-test in the

oneway fixed-effects ANOVA model) in educational and psychological research

when underlying assumptions are violated. Operationally, the guidelines

result from investigating the relationship between the simulation factors

defining MC studies (e.g., type of population score distribution) and the

empirical type I error and power values of a test. The latter are used to

evaluate the performance of the test being investigated.

Stage Two: Data Collection

In the next stage an accessible population of relevant studies (e.g.,

available MC studies of the F-test in the oneway fixed-effects ANOVA model)

is identified. This requires searching a variety of literature sources,

e.g., Current Index to Statistics, Dissertation Abstracts International,

Psychological Abstracts, ERIC. Several issues must be addressed in this

process.
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1. Issues of Study Selection

Identification of an accessible population of MC studies should be

followed by formulation of a sampling plan. If the population of accessible

MC studies is large, simple random sampling seems reasonable. Little

information is available regarding the minimum number of studies that should

be sampled to ensure a specified power for the statistical tests used in

quantitatively combining MC results.

If the population of accessible studies is small, the sampling p.an may

reduce to simply using all available studies in the research synthesis. This

was the strategy adopted by Harwell, Hayes, Olds, and Rubenstein (1990), who

attempted to summarize MC studies of the F-test in the oneway fixed-effects

ANOVA model. An extensive literature search by these authors, including the

Current Index to Statistics, ERIC, and Dissertation Abstracts International,

yielded approximately thirt accessible studies. Given the small population

of studies, Harwell at al. opted to use every available study in their meta-

analysis.

A consequence of this decision could be the introduction of one or more

study selection biases thL may predispose the results of the meta-analysis.

One manifestation of study selection bias occurs when the potentially

nonrandom sample of studies to be summarized differ systematically from the

population of studies. For example, differences among published and

unpublished MC studies of the same statistical test might be due to a study

selection bias. This kind of bias is often critical in substantive meta-

analysis in which statistically significant results are more likely to be

published (Rosenthal, 1979). However, this seems unlikely to pose a major

problem in a meta-analysis of MC studic..4 because publication of these studies
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is unrelated to notions of statistical significance. In addition, the nature

of MC studies (e.g., researcher controlled data generation) suggests that,

as a group, MC studies of the same statistical test are more homogeneous than

empirical studies of the same phenomenon. This reduces the likelihood that

an accessible sample of MC studies will systematically differ from a target

population of studios, but does not release methodological researchers from

the responsibility of checking for this kind of bias.

A study selection bias may also arise when a study is excluded from a

meta-analysis because of perceived methdological flaws. This raises the

question of whether all sampled studies should be included in the meta-

analysis or whether a screening process should be employed to detect. and

remove those studies that are judged to be methodologicaly flawed. Unless

there is convincing evidence that the results of a MC study are invalid there

is little reason to exclude any of the sampled MC studies (random or not)

from the meta-analysis.

As an example, suppose that a MC study investigated the performance of

the F-test in the oneway fixed-effects ANOVA model across several conditions

(e.g., sample sizes of 15, 25, or 40 per group). Suppose further that a

nominal type I error rate of .05 was used and that the reported empirical

type I error rates for a normal e4stribution, homogeneous variances, and

sample sizes of 15, 25, and 40 per group were .06, .03, and .10,

respectively. If the statistical assumptions underlying the F-test are

satisfied (which is the case here), the empirical type I error rate of the

F-test should converge to .05 as sample size increases. Barring

typographical errors in reporting the MC results, the empirical er'or rates

(i.e., .06, .08, 10) suggest a computer programing error. If this was the
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case the results would likely be invalid and might provide grounds for

excluding this study from the sample of studies to be summarized. In any

event, the decision to exclude a study because of percieved methodological

flaws is judgemental in nature. Any decision to exclude a MC study because

of suspected methodological flaws should be accompanied by an explanation of

the basis of the decision and an indication of how the results might change

if the study were included (Light & Pillemer, 1984, p.32).

2. Equatability of Outcome Variables

A frequent concern in meta-analysis is the requirement that the outcome

variables in the studies to be summarized be linearly equatable (Hedges &

Olkin, 1985, p. 108). In MC' studies the outcomes (i.e., empirical

proportions of rejections) share the same underlying metric and thus satisfy

the requirement of being linearly -Nquatable.

3. Estimating Effect Magnitude-

The choice of an appropriate effect magnitude (EM) depends on the

nature and purpose of a research synthesis. Glass (1976) defined EM through

a standardized mean difference (i.e., effct size) between two samples (Glass,

McGaw, & Smith, 1981). Other definitions of EM include measures of explained

variance when the number of samples is greater than two (cf. Hedges & Olkin,

/985, pp. 100-103) and nonparametric effect size estimates (cf. Hedges S

Olkin, 1985, pp. 92-100), and the dropout rate of students over '.ime measured

in proportions.

The results of a MC study are usually reported in tt.rms of empirical

proportions of rejections. These proportions can serve as EM estimates.
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Consider the results of a MC study of the F-test in the oneway fixed-effects

ANOVA model in which the effect of three types of population score.

distributions and three sample sizes are !-vestigated. Suppose that the

nominal type I error rate was .05 and that the empirical type I error rate

for a given combination of conditions (e.g., small sample size anc a

nonnormal population score distribution) was .065. Compared with the nominal

type I error rate, this value estimates the effect of the combination of MC

conditions upon, the type I error rate of the statistical test; the greater

the difference between the empirical and nominal type I error rates the

greater the effect.

Before continuing two comments are merited. First, the difference

between an empirical type I error rate and the nominal error rate represents

an index of the fit of an empirical sampling distribution of a statistical

test under the null hypothesis and a theoretical reference distribution; the

larger the difference the poorer the fit (and the lass valid the probability

statements) and vice versa. Empirical type I error rates that are (equally)

above or below the nominal value suggest an equally poor fit. Second, the

issues and methods described in this paper apply to both empirical type I

error and power values.

4. Defining the Explanatc :y Variables

An issue that has plaguei meta-analysis has been varying definitions of

explanatory variables across studies of the same phenomenon (Strube &

Hartmann, 1982). In a meta-analysis of MC studies the simulation factors

serve as explanatory variables (e.g., type of population score distribution,

sample size). For example, MC studies of the F-test in the oneway fixed-
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effects ANOVA Aodel would usually include one or more of the following

simulati i factors: type of population score distribution, number of groups,

patterns of group sample sizes, patterns of group sample sizes, patterns of

variance heterogeneity, and patterns of mean differences. Variation f.. the

outcome variables is modeled as a function of these kinds of explanatory

variables.

Adequately categorizing the exp"anatory variables is a critical part of

any meta-analysis. Consider the explanatory variable type of population

score distribution. To examine the effects c this variable on the outcomes,

proxy variables must be used that capture the effect of type of population

score distribution. For example, suppose that each of. twenty MC studies of

the F -test in the oneway fixed-effects ANOVA, model used varying skewness and

kurtosis values to define population score distributions. Under this scheme,

a population of scores having a skewness and a kurtosis of zero would'be

categorized as a normal distribution, a population of scores with a skewness

of zero and a kurtosis of three as a double exponential distribution, eta.

(Kendall & Stuart, 1977, Vol. I). If sufficient information on the data

generation process is available (e.g., skewness and kurtosis values), the

effects of various population score distributions could be represented by the

explanatory variables of skewness and kurtosis.

Occasionclly somewhat arbitrary decisions must be made concerning the

categorization of particular explanatory variables. Consider a MC study that

uses a variety of unequal sample sizes. Coding the pattern of unequal sample

calls for some scheme that adequately captures this information. It might

De sensible to limit the number of unequal sample size patterns or employ

several coding schemes and look for a convergence in the results.
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The next step is to enter the empirical type I error, power, and coded

explanatory variable values into a computer data file in preparation for

statistical analysis. Each line in a data file could correspond to a

combination (i.e., cell) of simulation factozs (i.e., explanatory variables)

in a MC study. For example, the first line of data associated with a cell

of a MC study of the F-test in the oneway fixed-effects ANOVA model might

look like

01 00.:10 00.00 3 10 .065 .777 2000 (1)

From left to right, 01 is a study identification code, 00.00 and 00.00 are

skewness and kurtosis indices (here the data was generated from a normal

population of scores), 3 is the number of groups, 10 is the sample size per

group, .065 is an empirical type I error value, .777 an empirical power value

for a particular noncentrality structure, and 2000 is the number of samples

used in computing the empirical type I error and power values.

The fact that the number of simulation factors is usually small (e.g.,

three or four), and the nature and specification of these factors (e.g.,

sample sizes used), usually clarifies what conditions were examined. This

suggests, but does not ensure, that explanatory variables in MC studies are

somewhat easier to define than their substantive counterparts.

5. Internal Validity

Al particularily serious threat to the validity of a meta-analysis is the

(lack of) internal validity of the results of each of the studies to be

summarized, i.e., the extent to which the results of a study can be
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attributed to the explanatory variable(s) and not to other (confounding)

factors (Campbell & Stanley, 1963, p.5). If there is evidence that the data

generated in a MC study have the desired properties (e.g., are pseudo-

random), this problem should not arise because the outcome variable values

(i.e., empirical type I error and power values) can then be unambiguously

attributed to the explanatory variables (i.e., simulation factors). This

minimizes the role of potentially confounding variables and permits strong

causal statments to be made (e.g., increasingly nonnormal population score

distributions result in increasingly inflated type I error values).

6. Independence of Effect Magnitudes

The use of inferential statiCzical methods in meta-analysis requires

that the EMs to be summarized are independent. Yet the same MC study will

typically yield a large number of EMs which Fre to be summarized. For

example, a MC study of the parametric ANCOVA model by Harwell and Serlin

(1988) yielded sixty four EMs (i.e., empirical proportions of rejections)

reflecting the performance of the F-test at a nominal error rate of .05 when

the associated null hypothesis was true. The use of pseudo-random number

generators to generate MC data implies that EMs like those in Harwell and

Serlin (1988) are independent.

In short, MC studies do not appear to suffer from the range or magnitude

of difficulties (e.g., study selection bias, lack of internal validity) that

often plague substantive meta-analysis. This is due to the control that

methodological researchers exercises over the data generation process in a

MC setting and bolsters the credibility of a carefully conducted summary of

MC results.
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Stage Three: Data Evaluation

The complexity of many MC studies (e.g., Tonarken & Serlin, 1987), the

difficulty of adequately categorizing explanatory variables, and the possibly

large number of EMs to be summarized suggests the need to employ competent

reviewers to examine sach MC study to ensure a consensus in what was studied,

how assumption violations were modeled etc. Each set of MC results should

be examined considering 1) the data generation procedure, 2) evidence of the

success of the data generation, and 3) reported type I error and power

results when the assumptions underlying a statistical test are satisfied

prior to coding.

The nature and amount of MC data to be coded and entered into a computer

data file in preparation for statistical analysis virtually guarantees

errors. This requires the development of a system in which these errors are

detected and corrected. For example, the agreement among teams of reviewers

coding the same MC data could be assessed with indices of inter-rater

consistency (Cooper, 1982). Given the nature of MC studies,, only complete

agreement in what is being coded is acceptable.

Stage Four:. Data Analyses and Interpretation

In the fourth stage, appropriate statistical methods for summarizing MC

results are applied to the EMs. Good statistical practice calls for a

thoiough examination of the MC data to help to identify patterns in the data

and to suggest particular analyses; however, this is unlikely to provide a

complete and accurate description of the relationships between the outcome

and explanatory variables. More formal procedures are needed to model

variation in the outcomes (i.e., empirical type I error and statistical power
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values) as a function of key explanatory variables (e.g., type of population

score distribution).

A primary reference for statistical procedures in meta-analysis is

Hedges and Olkin (1985). These authors discuss a procedure in which a fixed-

effects regression model is fitted to EMs. This procedure can be used to

quantitatively summarize MC results.

Consider the popnlation model

dk a Xklbl + 42b2 + + XiabT (2)

D X/5

In (2) dk is the k(th) EM (proportion of rejections) which depends on a set

of T fixed explanatory (i.e., predictor) variables X, ET is a regression

coefficient which captures the relationship between the t(th) explanatory

variable and dk, D is a K x 1 vector of EMs, X is a K x T matrix of

explanatory variable values, andflisaTxlvector of regression

coefficients (see Hedges & Olkin, 1985, p. 169). The model in (2) could

contain interaction and nonlinear predictor terms. Errors of prediction

using (2) can be represented by ek g dk - pk, where pok is an empirical

proportion of rejections from a cell (i.e., particular combination of

conditions) in a MC study.

As an example of the use of (2), suppose that the empirical type I error

values of twenty MC studies of the F-test in the oneway fixed-effects ANOVA

model were to be summarized and that each study examined the same simulation

factors (e.g., three types of population score distrIbution crossed with

three sample sizes). Associated with each cell in each MC study are coded

17
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explanatory variables (see (1)) and an empirical type I error value for a

given nominal error rate. Thus the total number of EMs to be summarized is

9 (cells) x 20 (MC studies) = 180 EMs. Concerning model (2), T = 3 and K =

180 in.this example.

Tests for the presence of a relationship between the T explanatory

variables and the outcome variable(s), and whether the explanatory model is

correctly specified (i.e., whether all the variables needed to explain

variation in the pi are in the model), can be performed using procedures

presented in Hedges and Olkin (1935, pp. 168-174).

The first step is tb estimate the p in (2). Ordinary least squares

estimation of the PT is likely to be inappropriate because the EMs (i.e.,

empirical proportion of rejections) will have different variances (a

violation or ordinary least squares estimation) when the number of samples

(i.e., replications) differs across MC studies. Instead, weighted least

squares estimation of the PT can be performed using a diagonal weighd.ng

matrix with elements 1/472p 1/[pk(1-pt)/Sk] = Sk/pk(1-pk), Sk = number of

samples associated with each pi (Hedges & Olkin, 1985, pp. 169-174). For

hypothesis testing purposes the distribution of the ek is assumed to be normal

with a mean of zero and a diagonal covariance matrix given by E pe This

means that the errors are uncorrelated across the pi but do not necessarily

share the same variance.

Weighted least squares estimation of the PT permits the regression model

in (2) to be fitted to the pi. A test for a relationship between the set of

T explanat*ry variables and the outcome variable can be determined by testing

the hypothesis

18
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Ho : p1 = p2 = . . . = pr = 0 (3)

using the Qiit statistic presented in Hedges and Olkin (1985, p. 171). This

statistic is equal to the weighted sum of squares due to regression

associated with fitting a model like (2) to an outcome variable. Under the

truth of (3), Qa is distributed as a chi-square variable with T degrees of

freedom (assuming the weighted least squares program includes an intercept

in the regression model; see Hedges & Olkin, 1985, p. 174). Rejection of the

hypothesis in (3) implies a relationship between the set of T predictors and

the pi; retention of this hypothesis impliem that there is no relationship.

Hedges and Olkin also provide expressions for constructing a confidence

interval about individual fit parameters.

An important use of the Qa statistic is to test competing explanatory

models. For example, ar explanatory model might yield a Qk statistic based

on the variable total sample size. A competing explanatory model might yield

a QRstatistic based on the variables in model one plus skewness and kurtosis

predictors. A chi-square test of the difference in the two Qk statistics

based on degrees of freedom (risodo,12 Tmod.11) provides evidence about the role

of the skewmiss and kurtosis predictors in accounting for variation in the

pi. The multiple R2 provides evidence about the explanatory power of the

model.

A key characteristic of the regression procedure discussed in Hedges and

Olkin is the ability to test model specification (i.e., whether all the

explanatory variables contributing to variation in the pi are in the model;

if they are not the model is misspecified and the results subject to model

misspecification bias). A test of model specification can be performed when
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d the assumptions of uncorrelated errors which have been sampled from

al distribution are tenable. An error sum of squares associated with

(2) is computed using the statistic QE = D'Ep D - QV where D, defined

earlier, is a K x 1 vector of empirical proportions of rejections. If the

model is correctly specified QE is approximately distributed as a chi-square

variable with K-T-1 degrees of freedom. Rejection of the hypothesis that the

model is correctly specified implies that the (weighted) error variance is

larger than expected (i.e., the error term likely contains variation due to

explanatory variables which should appear in (2)) (Hedges & Olkin, 1985,

p.173).. The difference between QE statistics for competing models can also

be assessed. The QE and QE statistics are illustrated in the next section.

The information provided by the R2, Qa, and QE statistics has important

implications for constructing explanatory models to summarize MC results.

These statistics permit methodological researchers to tease out important

relationships zmong explanatory variables and an outcome variable. They also

provide evidence about model misspecification.

An Example of Quantitatively Summarizing Monte Carlo Results

A small data set consisting of seven MC studies of the parametric

Bartlett (1937) test of the equality of independent variances is used to

illustrate the process of quantitatively summarizing MC results. The fact

that the behavior of this test is well known through analytic (Box, 1953) and

empirical work (e.g., Conover, Johnson, & Johnson, 1981) will provide a

standard against which to compare the results of the meta-analysis. For

example, analytic and empirical work suggests that the shape of the
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population score distribution should play a key role in the ability of any

explanatory model to predict variation in type I errors. Note that this

example is not intended to be comprehensive; the purpose is to discuss issues

raised earlier in the paper and to illustrate how MC results can be

quantitatively summarized.

The population of accessible studies was defined to ha all published MC

studies of the behavior of the parametric Bartlett test of the equality of

independent variances. The Bartlett test tests the hypothesis

Ho : cr21 = cr22 = = c27, j = 112,...,J (4)

under the assumptions of independent and noraally distributed errors. A

nonrandom sample of seven MC studies investigating the performance of this

test were used in the meta-analysis. Hence the results should be regarded

as preliminary. The empirical proportions of rejections (i.e., pk) served as

the outcome variable. Finally, only the type I error case was investigated

for a nominal error rate of .05.

Data from each of the seven MC studies were checked to ensure that the.

Bartlett test behaved as expected under certain conditions (e.g., empirical

type I error rates converged to .05 as sample size increased when the

assumptions underlying the Bartlett test were satisfied). No irregularities

were noted. Four of the seven studies provided limited information about the

random number generator.

Only a few simulation factors were examined in the seven MC studies and

thus it was relatively easy to code the explanatory variables. The following

variables were coded:

2:1.
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Skewness [SKEW] (actual value coded)

Kurtosis [KURT] (actual value coded)

Number of Groups [NUMGRPS] (2, J)

Total Sample Size [TOTALN] (actual value coded)

Number of Monte Carlo samples or replications [REPS1]

Empirical type I error values ['MEI]

Two procedures were used to detect coding errors. First, the data file

was scanned .1."cr obvious errors and corrections were immediately made.

Second, the relatively small number of MC studies and EMs (K = 71) permitted

each study to be reviewed a second time, with the coding checked on a line

by line basis. Errors detected in this fashion were immediately corrected.

Research Question and Rationale

A single research question was addressed using the weighted least

squares model outlined earlier: Does the explanatory power of a model

predicting pk using the predictors NUMGRPS, TOTALN, and REPS1 (model 1, T.73)

differ from that of a model containing these same predictors ,:lus SKEW and

KURT (model 2, T=5)? The rationale for this question is that the analytic

work of Box (1`53) and subsequent MC results provi0.7. uncompromising evidence

that the type I error behavior of this test is quf.te sensitive to nonnormal

skewness and kurtosis. This suggests that the power of explanatory models

with and without the predictors SKEW and KURT will differ dramatically.
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Analyses

A nominal type I error rate of .05 was used for all hypothesis tests.

The pi were assumed to be uncorrelated and the normality assumption was judged

to be tenable after examining the residuals from the analyses.

Thz hypothesis associated with model 1 was that the T = 3 explanatory

variables (i.e., NUMGRPS, TOTALN, SAMPLE) were not associated with the

outcome variable pi, i.e., Ho: pi = p2 = 1643 = 0. The regression statistic Qiu.

= 1066.5 was computed for model 1, compared to a chi-square value based on

T = 3 degrees of, freedom, and found to be statistically significant.
.

However, the squared multiple correlated coefficient, adjusted for the number

of predictors, was R2adi modell m .02 (see Marascuilo & Serlin, 1988). this

suggests a model with litle explanatory power, i.e., virtually no

relationship between type I errors and the set of predictors.

The associated fit statistic for model 1, Qu, was computed as

D' Ep D - Qiu = 50126 - 1066.5 = 49059.5, where pi is a (K = 71) x 1 vector

of empirical type I error values. This value was compared to a chi-square

value based on K-T-1 = 71-3-1 = 67 degrees of freedom and was significant

(i.e., the model is misspecified). This suggests that the PYplanatory power

of model 1 could be improved by including additional predictors (e.g., SKEW,

KURT).

The hypothesis associated with model 2 is that there is no relationship

between the outcome variable pi and the set of T = 5 predictors NUMGRPS,

TOTALN, REPS1, SKEW, and KURT, i.e., Ho: pl p2 = p3 p4 = A5 = 0. The.

regression statistic On was computed and found to be significant when

compared to a chi-square value based on 5 degrees of freedom. The statistic

Qn2 %I = 43856.7 provides evidence about the power of the explanatory model
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with and without the SKEW and KURT variables. This difference is compared

to a chi-square with 5 - 3 = 2 degrees of freedom and is significant. Even

more compelling is ream radon w 97. This values suggests indicates there is

a quite strong relationship between type I error and the model including the

skewness and kurtosis predictors.

The fit statistic for model 2 wi 02E2 = 48544 - 44359.7 = 4184.3, which

was significant when compared to a chi-square value based on 71-6 = 65

degrees of freedom. Despite the size of the QR2 - Qiu difference and the

multiple R2, the Q! - QE difference (significant compared to a chi-square

based on 67 - 65 - 2 degrees of freedom) suggests that the explanatory model

containing T a 5 predictors is still misspecified. Additional analyses in

which interaction terms and nonlinear predictors were included in the

explanatory model did little to reduce model misspecification.

Additional information about the contribution of the individual

predictors is contained in the estimated regression coefficients, obtained

from model 2 above. These coefficients and their standard errors (corrected

following Hedges & Olkin, 1985, p.174), were

Estimated Estimated
Predictor Regression Coefficient Standard Error

NUMGRPS -.002 .0007
TOTALN .000 .0000
SAMPLE -.003 .0007
SKEW .203 .0029
KURT .058 .0007

These values provide additional evidence about the importance of SKEW and

KURT in the explanatory model above.

In short, the meta- analysis clearly detected the relationship predizted
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by analytic work and supported by available MC results: that the shape of a.

population score distribution has a strong influence upon the type I rate of

the Bartlett test for independent variances. Factors such as total sample

size and number of MC samples appear have little effect on the type I

error rate of the Bartlett test. The misspecification of th explanatory

model containing all five predictors is statistically significant but seems

negligable in light of the associated R2 for model 2.

Conclusion

The application of quantitative methods of, research synthesis to

summarize Monte Carlo results shows great promise for improving

methodological practice. The goal is to produce an empirical network of

"'onte Carla results of a particular statistical test that will generate

guidelines for the appropriate use of a test under specific assumption

violations. This will also permit previous ,Itatistical analyses to be

evaluated considering these guidelines.

Conceptually, the process of quantitatively summarizing Monte Carlo

remits follows is quite similar to that of substantive meta-analysis, i.e.,

problem formulation, data collection, data evaluation, and data analysis and

interpretation. The use of the weighted least square regression model

provides a powerful tool for investigating the relationship between an

outcome variable (e.g., type I error) and a set of explanatory variables.

The small meta-analysis for Monte Carlo results for the Bartlett test

of independent vari_nces suggest that these techniques can play a key role

in constructing an empirical frameeork of Monte Carlo studies of a

statistical test. These procedures should be especially useful for
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addressing longstanding questions about the behavior of particular

statistical tests when underlying assumptions are violated. For example, the

proposed methodology might prove to be especially valuable in examining the

behavior of the F-4-est in the ANCOVA model and various multivariate tests

(e.g., Rao F, Pillai-Bartlett) in the MANOVA model when assumptions are

violated.
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